Modulation of microporous/mesoporous structures in self-templated cobalt-silica
نویسندگان
چکیده
Finite control of pore size distributions is a highly desired attribute when producing porous materials. While many methodologies strive to produce such materials through one-pot strategies, oftentimes the pore structure requires post-treatment modification. In this study, modulation of pore size in cobalt-silica systems was investigated by a novel, non-destructive, self-templated method. These systems were produced from two cobalt-containing silica starting materials which differed by extent of condensation. These starting materials, sol (SG') and xerogel (XG'), were mixed with pure silica sol to produce materials containing 5-40 mol% Co. The resultant SG-series materials exhibited typical attributes for cobalt-silica systems: mesoporous characteristics developed at high cobalt concentrations, coinciding with Co3O4 formation; whereas, in the XG-series materials, these mesoporous characteristics were extensively suppressed. Based on an examination of the resultant materials a mechanism describing the pore size formation and modulation of the two systems was proposed. Pore size modulation in the XG-series was caused, in part, by the cobalt source acting as an autogenous template for the condensation of the silica network. These domains could be modified when wetted, allowing for the infiltration and subsequent condensation of silica oligomers into the pre-formed, mesoporous cages, leading to a reduction in the mesoporous content of the final product.
منابع مشابه
Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules.
We describe in this paper the development of plugged hexagonal templated silicas (PHTS) which are hexagonally ordered materials, with internal microporous silica nanocapsules; they have a combined micro- and mesoporosity and a tuneable amount of both open and encapsulated mesopores and are much more stable than other tested micellar templated structures.
متن کاملHighly Mesoporous Carbons Obtained Using a Dynamic Template Method
New nanoporous carbons with extremely high mesopore volumes and surface areas were obtained using mesoporous silica with a 3-D wormhole porous framework as templates. Mesoporous silica was synthesized following the literature described methods. Polystyrene sulfonic acid-based organic salts were used as carbon precursors. To evaluate the effect of sodium on porosity development silica matrices w...
متن کاملNanoscale assembly of lanthanum silica with dense and porous interfacial structures
This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure abo...
متن کاملINFLUENCE OF THE PREPARATION METHOD ON THE STRUCTURE,PHASE FORMATION AND MAGNETIC PROPERTIES OF TEMPLATED CUFE2O4 SPINEL
The synthesis of mesoporous CuFe2O4 spinel by several nanocasting strategies (i.e., multi-step nanocasting, one step nanocasting, modified solid-liquid), in which copper and iron nitrates are used as precursors and Pluronic P123 as surfactant, is explored. We have also checked the effect of pH, citric acid and sodium citrate in multi-step nanocasting method. The modified solid-liquid method whi...
متن کاملHybrid Mesoporous Silicas and Microporous POSS-Based Frameworks Incorporating Evaporation-Induced Self-Assembly
We fabricated a series of mesoporous silicas and mesoporous organosilicates with hierarchical porosity through evaporation-induced self-assembly using Pluronic F127 as a template in this study. We could tailor the mesophase of each mesoporous silica sample by varying the weight ratio of its two silica sources: tetraethyl orthosilicate (TEOS) and triethoxysilane hydrosilylated octavinyl polyhedr...
متن کامل